Baryon resonance EM transition form factors at high Q² in a light-cone quark model

Baryon resonance EM transition form factors at high Q² in a light-cone model

- Calculations of EM transition form factors from N to N* with Brad Keister, NSF
 - Light-cone (relativistic) quark model fit to nucleon elastic form factors
 - Baryon wave functions found by solving a three-quark Hamiltonian
 - \cdot Calculate strong-decay signs using pair-creation ($^{3}\mathrm{P}_{0}$) model

EM transition form factors

- Rigorous approaches underway:
 - Schwinger-Dyson Bethe-Salpeter studies
 - Lattice QCD
- Quark-model calculations
 - Most reliable use light-front dynamics to improve one-body current approximation N, ∆, Roper, N*(1535):
 - Terent'ev, Weber, Dziembowski, Chung & Coester, Schlumpf, Aznauryan, Rome group, Miller
 - Relativistic effects are large
 - Need to remove interaction dependence of boosts
 - Minimize effect of ignored two-body currents
 - Other groups use point-form

Light-cone model of EM form factors

- Construct baryon wave functions in baryon CM frame in terms of free-particle lightfront spinors
 - Bakamjian-Thomas construction
- Evaluate matrix elements of one-body EM current using these wave functions
- Find helicity amplitudes for EM transitions in terms of reduced matrix elements

Light-front dynamics

- Light-front Hamiltonian dynamics
 - Constituents are treated as particles rather than fields
 - Certain combinations of boosts and rotations are independent of the interactions which govern quark dynamics
 - Simplifies calculations of matrix elements in which composite baryons recoil with large momenta
 - Use complete orthonormal set of basis states
 - Composed of three constituent quarks
 - Satisfy rotational covariance

Calculation scheme

- Bakamjian and Thomas scheme:
 - Three-body relativistic bound-state problem is solved for the wave functions of baryons with the assumption of three interacting constituent quarks
 - Wave functions used to calculate the matrix elements of one (and in principle, two, and three)-body electromagnetic current operators

Calculational details

- Expand in sets of free-particle states:
 - Evaluate I⁺ (EM) current matrix element by expanding baryon wave function in terms of light-front spinors for the quarks

$$\begin{split} \langle M'j; \tilde{\mathbf{P}}'\mu'|I^{+}(0)|Mj; \tilde{\mathbf{P}}\mu\rangle &= \\ (2\pi)^{-18} \int d\tilde{\mathbf{p}}_{1}' \int d\tilde{\mathbf{p}}_{2}' \int d\tilde{\mathbf{p}}_{3}' \int d\tilde{\mathbf{p}}_{3} \int d\tilde{\mathbf{p}}_{1} \int d\tilde{\mathbf{p}}_{2} \int d\tilde{\mathbf{p}}_{3} \sum \langle M'j'; \tilde{\mathbf{P}}'\mu'|\tilde{\mathbf{p}}_{1}'\mu_{1}'\tilde{\mathbf{p}}_{2}'\mu_{2}'\tilde{\mathbf{p}}_{3}'\mu_{3}'\rangle \\ \times \langle \tilde{\mathbf{p}}_{1}'\mu_{1}'\tilde{\mathbf{p}}_{2}'\mu_{2}'\tilde{\mathbf{p}}_{3}'\mu_{3}'|I^{+}(0)|\tilde{\mathbf{p}}_{1}\mu_{1}\tilde{\mathbf{p}}_{2}\mu_{2}\tilde{\mathbf{p}}_{3}\mu_{3}\rangle \langle \tilde{\mathbf{p}}_{1}\mu_{1}\tilde{\mathbf{p}}_{2}\mu_{2}\tilde{\mathbf{p}}_{3}\mu_{3}|Mj; \tilde{\mathbf{P}}\mu\rangle. \end{split}$$

 Need baryon state vectors written in terms of wave functions Calculational details...

- Expand in sets of free-particle states:

 $\langle ilde{\mathbf{p}}_1 \mu_1 ilde{\mathbf{p}}_2 \mu_2 ilde{\mathbf{p}}_3 \mu_3 | Mj; ilde{\mathbf{P}} \mu
angle =$

 $\begin{aligned} &\left|\frac{\partial(\tilde{\mathbf{p}}_{1},\tilde{\mathbf{p}}_{2},\tilde{\mathbf{p}}_{3})}{\partial(\tilde{\mathbf{P}},\mathbf{k}_{1},\mathbf{k}_{2})}\right|^{-1/2} (2\pi)^{3} \delta(\tilde{\mathbf{p}}_{1}+\tilde{\mathbf{p}}_{2}+\tilde{\mathbf{p}}_{3}-\tilde{\mathbf{P}}) \langle \frac{1}{2}\bar{\mu}_{1}\frac{1}{2}\bar{\mu}_{2}|s_{12}\mu_{12}\rangle \langle s_{12}\mu_{12}\frac{1}{2}\bar{\mu}_{3}|s\mu_{s}\rangle \\ &\times \langle l_{\rho}\mu_{\rho}l_{\lambda}\mu_{\lambda}|L\mu_{L}\rangle \langle L\mu_{L}s\mu_{s}|j\mu\rangle Y_{l_{\rho}\mu_{\rho}}(\hat{\mathbf{k}}_{\rho})Y_{l_{\lambda}\mu_{\lambda}}(\hat{\mathbf{K}}_{\lambda})\Phi(k_{\rho},K_{\lambda}) \\ &\times D_{\bar{\mu}_{1}\mu_{1}}^{(1/2)\dagger}[\underline{R}_{cf}(k_{1})]D_{\bar{\mu}_{2}\mu_{2}}^{(1/2)\dagger}[\underline{R}_{cf}(k_{2})]D_{\bar{\mu}_{3}\mu_{3}}^{(1/2)\dagger}[\underline{R}_{cf}(k_{3})]. \end{aligned}$

Calculational details...

- Cluster expansion of electromagnetic current operator $I^{\mu}(x) = \sum_{j} I^{\mu}_{j}(x) + \sum_{j < k} I^{\mu}_{jk}(x) + \cdots$
- We evaluate only one-body matrix elements and assume struck quark has EM current of free Dirac particle

$$\langle \tilde{\mathbf{p}}' \mu' | I^+(0) | \tilde{\mathbf{p}} \mu \rangle = F_{1q}(Q^2) \delta_{\mu'\mu} - i(\sigma_y)_{\mu'\mu} \frac{Q}{2m_i} F_{2q}(Q^2)$$

 Result is a 6D integral that we evaluate using numerical techniques [quasi-random number (Sobol) sequences]

Light-cone model...

• Wave functions expanded in h.o. basis up to N=6 or 7 ($h\omega$)

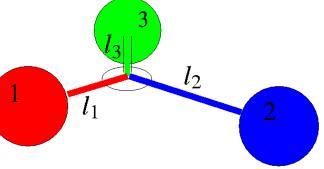
- e.g. 50 components for N and Roper, 70 for N(1535)S $_{11}$

- Requires simultaneous calculation of strong-decay amplitudes
 - Calculate $N\pi$ sign using 3P_0 model using identical wave functions
- Fit quark EM form factors to nucleon EM form factors (moments and Q² dependence)
 - Similar calculations performed by Rome group (Cardarelli, Pace, Salme, Simula)

Model of spectrum and wave functions

- Confinement:
 - Flux tubes, combined with adiabatic approx.
 - minimum length string: $V_B(\mathbf{r}_1, \mathbf{r}_2, \mathbf{r}_3) = \sigma(l_1 + l_2 + l_3) = \sigma L_{min}$
 - linear at large q-junction separations

- Ground-state spectrum suggests flavor-dependent shortrange (contact) interactions
- Use OGE (other possibilities: OBE, instanton-induced interactions)



Wave functions

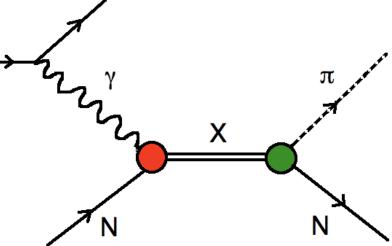
- Variational calculation in large HO basis (SC, N. Isgur)
 - String confinement, plus associated spin-orbit
 - Include OGE Coulomb, contact, tensor, spinorbit
 - Relativistic KE, relativistic corrections in potentials, e.g.

$$\left(\frac{m_i m_j}{E_i E_j}\right)^{\frac{1}{2} + \epsilon_{\rm cont}} \frac{8\pi}{3} \alpha_s(r_{ij}) \frac{2}{3} \frac{\mathbf{S}_i \cdot \mathbf{S}_j}{m_i m_j} \left[\frac{\sigma_{ij}^3}{\pi^{\frac{3}{2}}} e^{-\sigma_{ij}^2 r_{ij}^2}\right] \left(\frac{m_i m_j}{E_i E_j}\right)^{\frac{1}{2} + \epsilon_{\rm cont}}$$

- Contact interaction smeared with Gaussian form factor, σ_{ij} depends on quark flavor (1.8 GeV for light quarks)

Electro/photo-production amplitude signs

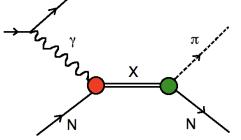
- Experiments measure interference of products of amplitudes $A^{+}_{X-\gamma N} A_{X-N\pi}$ with nucleon Born term and/or each other
- Phase of either depends on sign conventions in N and X wave fns

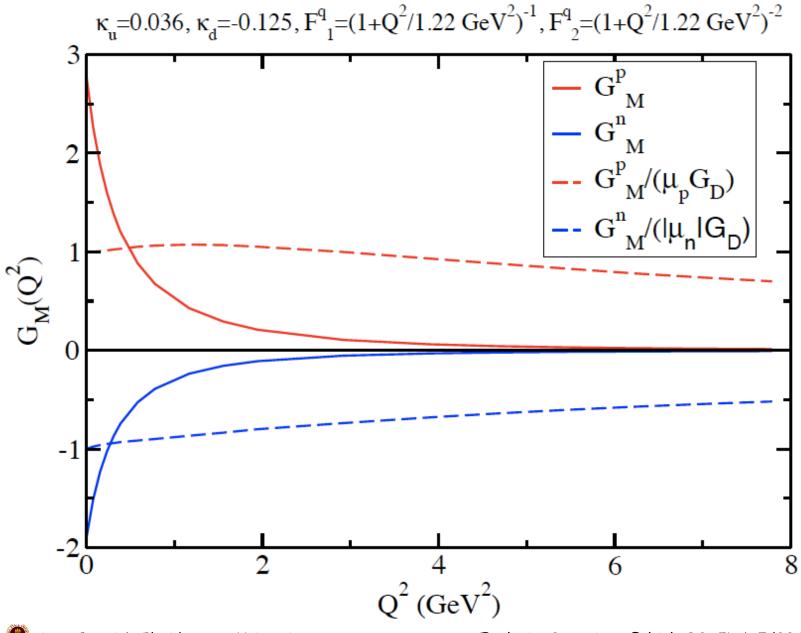


Phase of product does not!

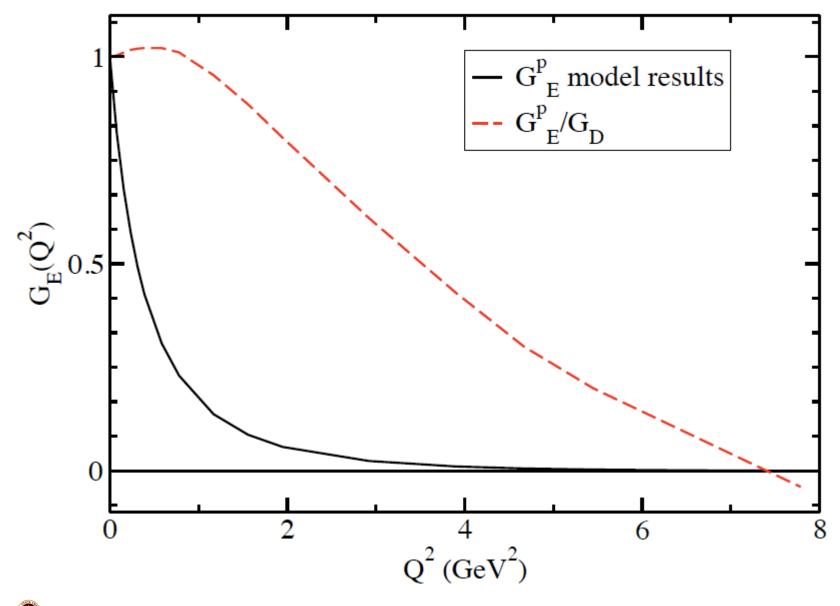
Electro/photo-production amplitude signs...

- Photo- and electro-production amplitudes quoted in analyses are the products $A^{\dagger}_{X-\gamma N} A_{X-N\pi} / |A_{X-N\pi}|$
 - Phase of $A_{X\text{-}N\pi}$ not measurable in $N\pi$ elastic scattering
 - Theorists must calculate $A_{X-N\pi}$ with exactly the same X and N wave functions used to calculate $A_{X-\gamma N}$
 - We use ${}^{3}P_{0}$ model



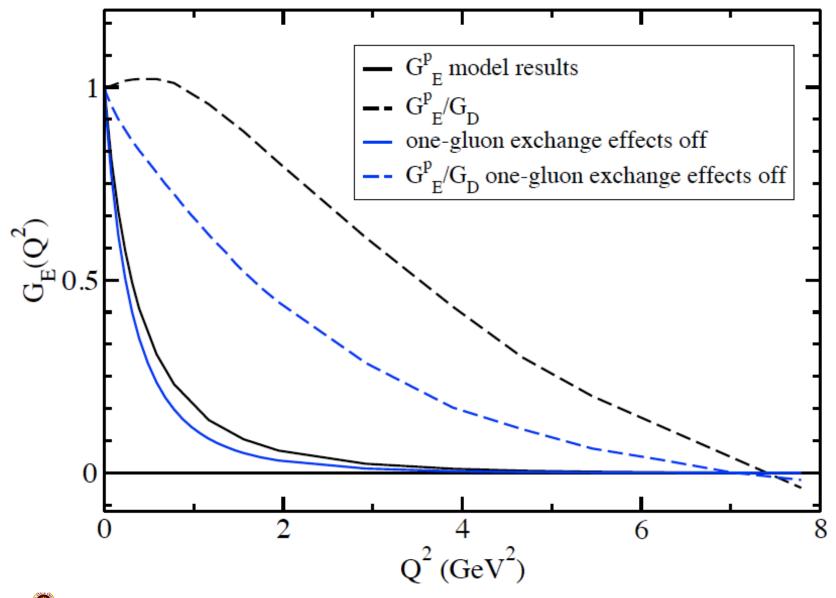


Exclusive Reactions @ high Q2, JLab 5/20/10



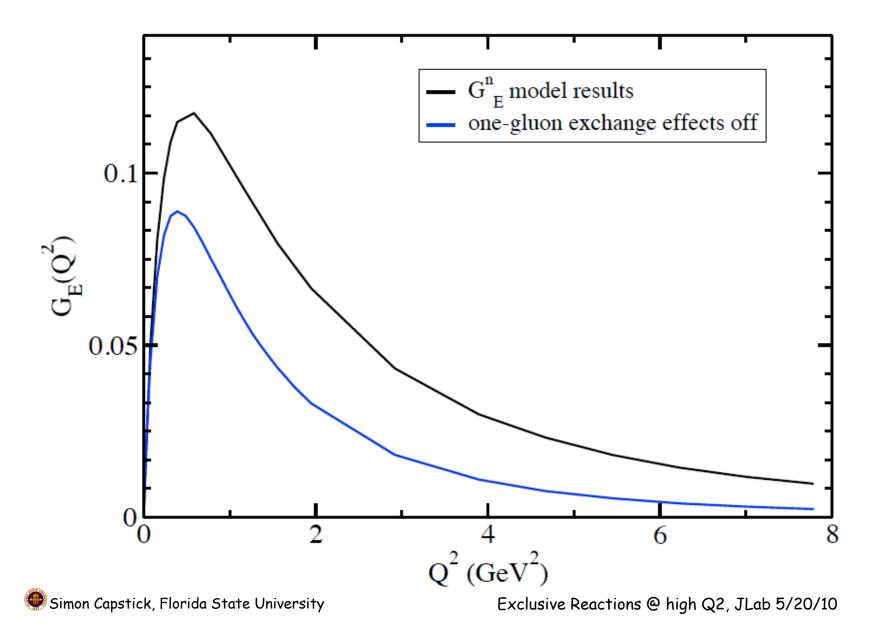
Exclusive Reactions @ high Q2, JLab 5/20/10

Proton electric form factor

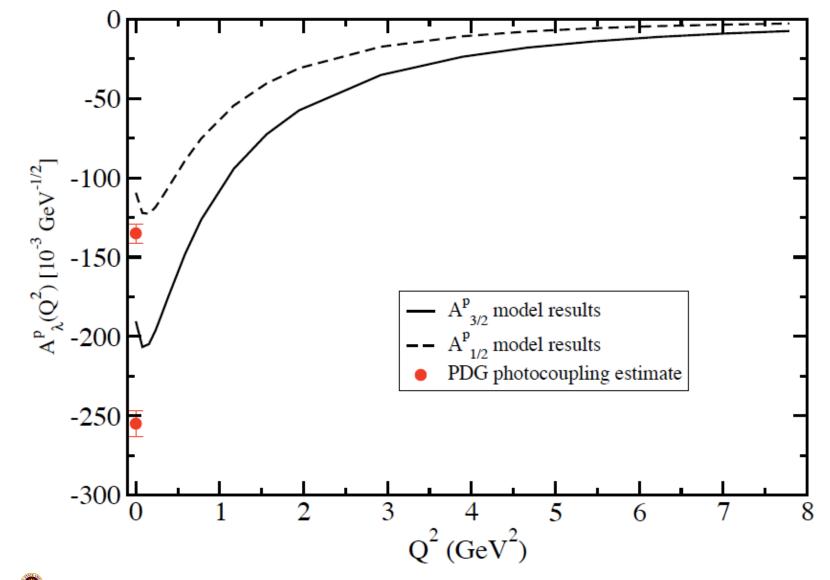


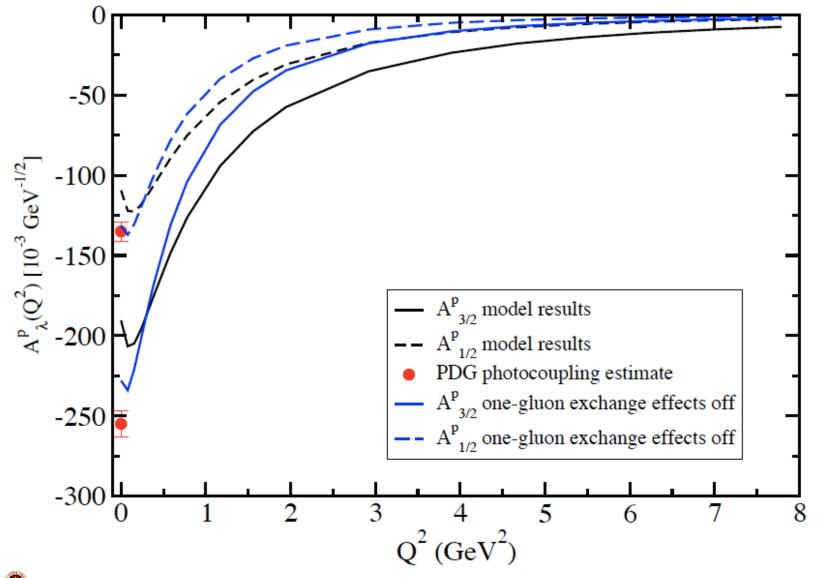
Simon Capstick, Florida State University

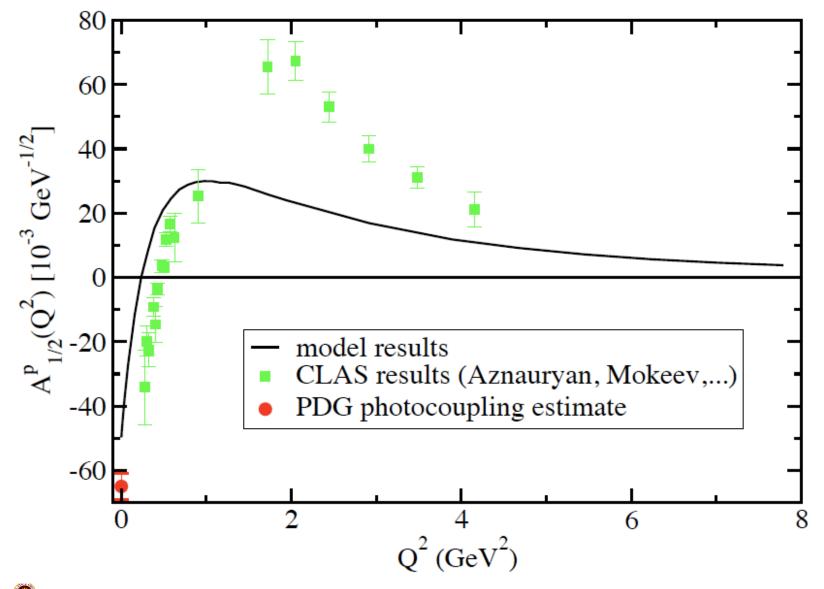
Exclusive Reactions @ high Q2, JLab 5/20/10

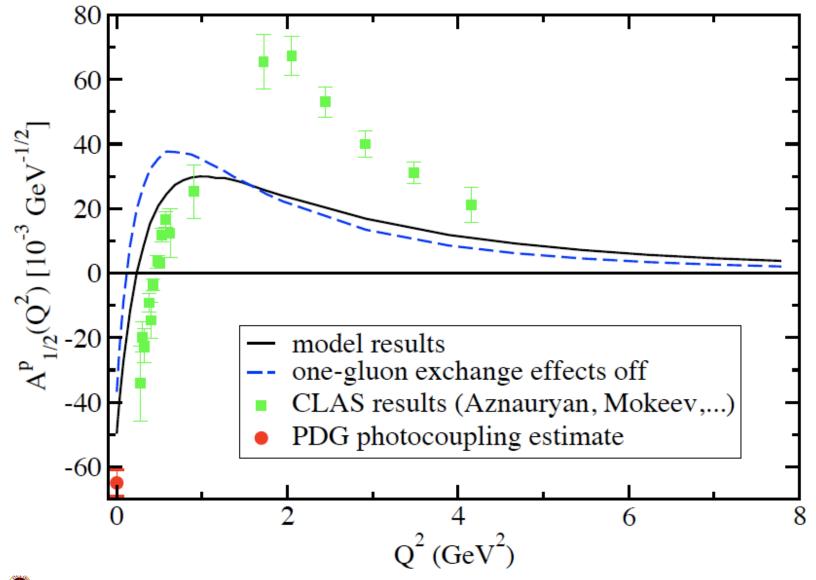


Delta resonance transverse amplitude

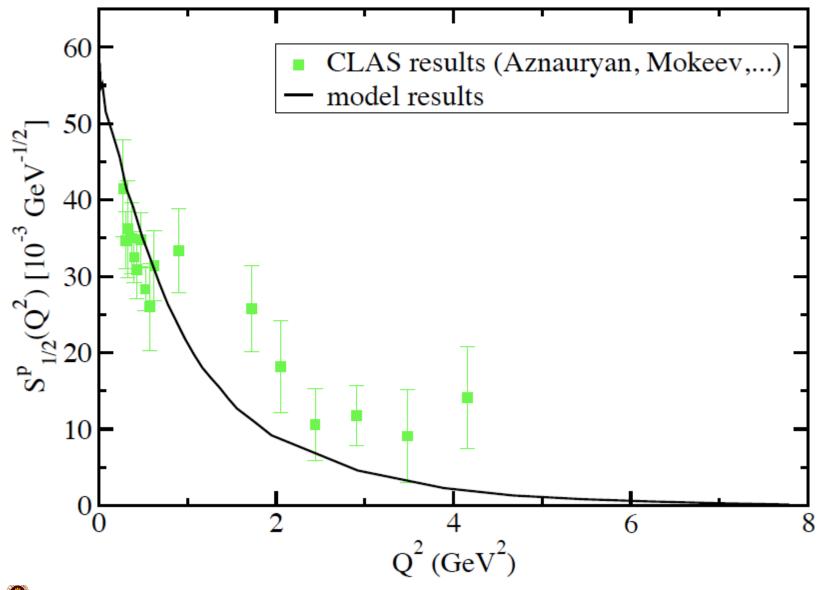






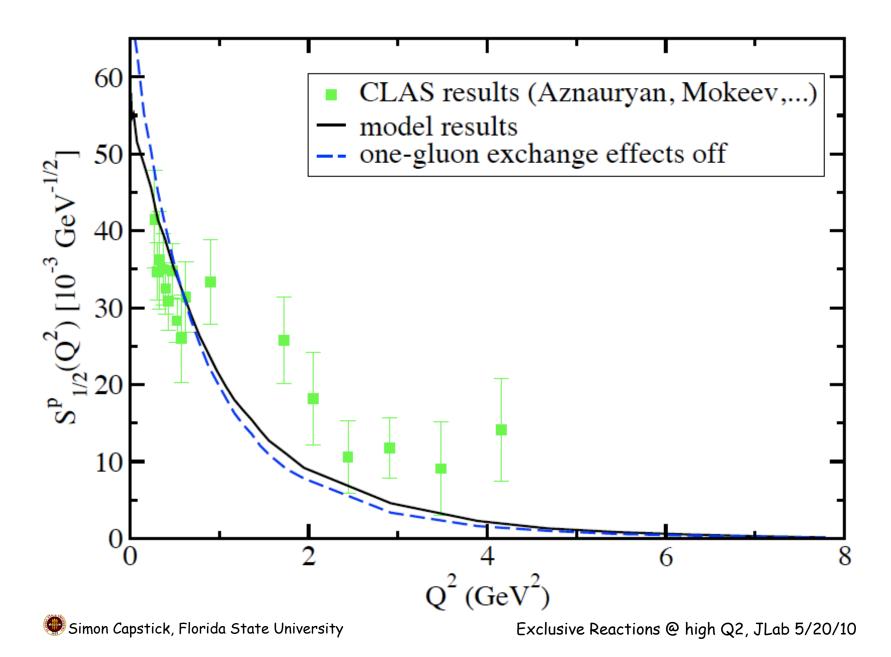


Roper resonance scalar amplitude

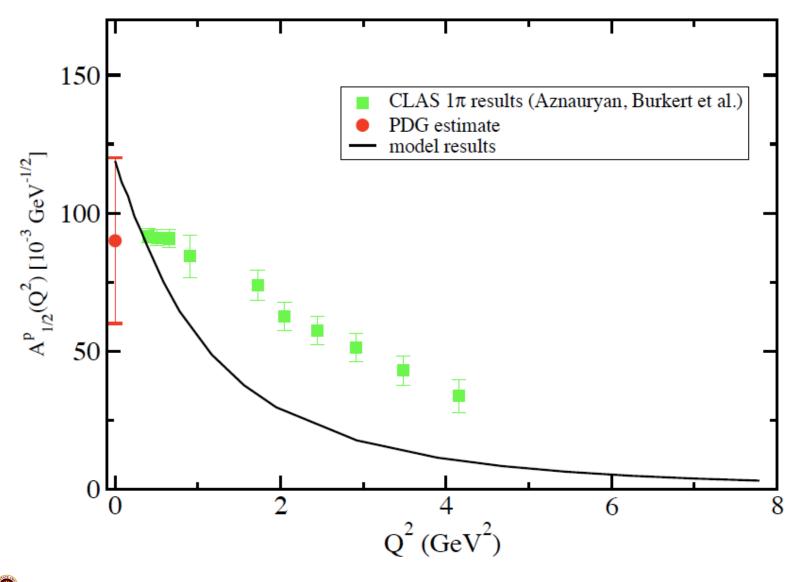


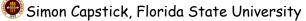
Simon Capstick, Florida State University

Roper resonance scalar amplitude



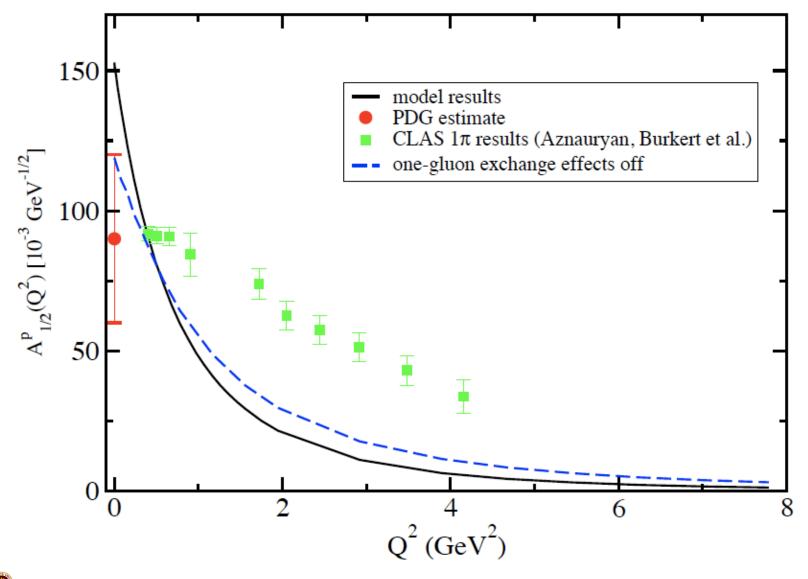
$N(1535)S_{11}$ resonance transverse amplitude



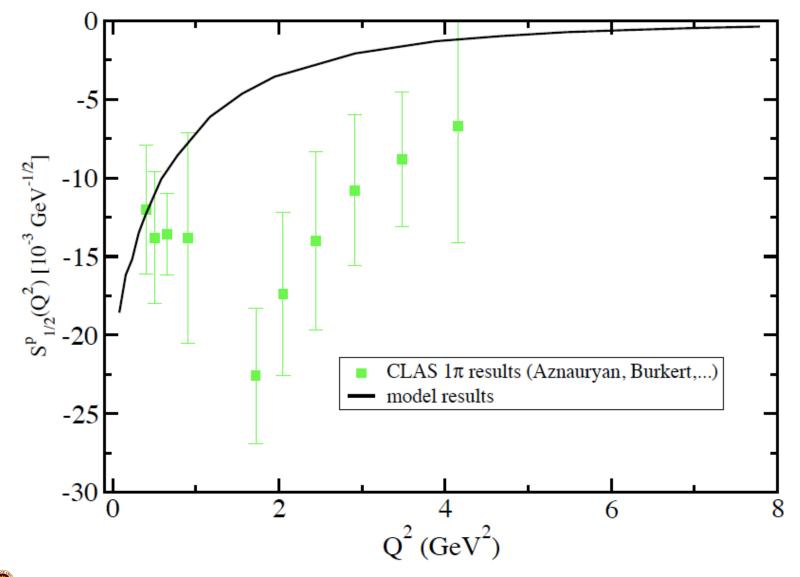


Exclusive Reactions @ high Q2, JLab 5/20/10

 $N(1535)S_{11}$ resonance transverse amplitude

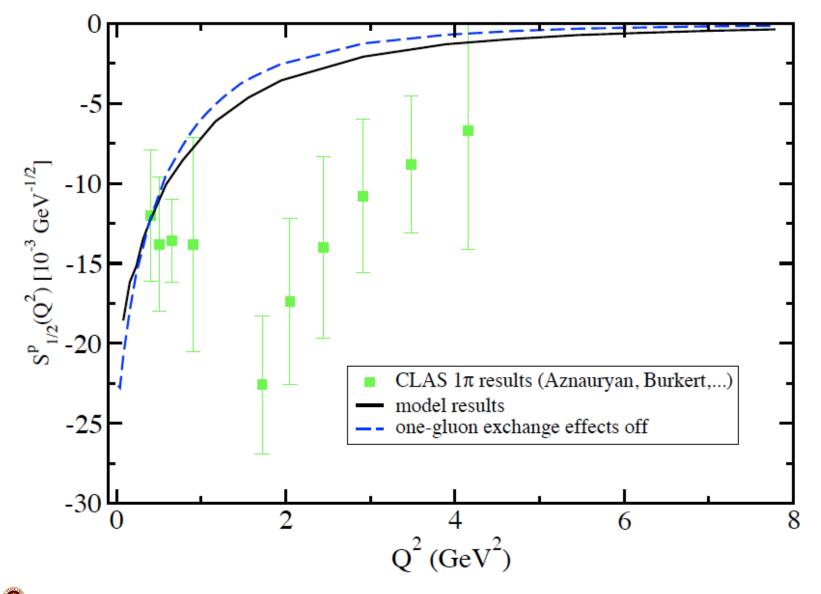


 $N(1535)S_{11}$ resonance scalar amplitude



Exclusive Reactions @ high Q2, JLab 5/20/10

 $N(1535)S_{11}$ resonance scalar amplitude



Exclusive Reactions @ high Q2, JLab 5/20/10

Rotational covariance

- States with higher J
 - Rotations are dynamical in light-front QM
 - It is possible to quantify the violation of rotational covariance by forming a linear combination of light-front spin matrix elements which should be zero
 - E.g. for $\Delta(1232)$ there is one such combination
 - Becomes comparable to $A^{p}_{3/2}$, $A^{p}_{1/2}$ only at higher Q^{2}
 - Calculation of sub-dominant amplitudes (E1+, S1+)
 believable at Q² below roughly 2 GeV²
 - Non-zero because calculation truncated at one-body currents

Rotational covariance...

- For states with J=5/2 there are three linear combinations which should be zero
 - For N5/2⁺(1680) these may not small at 1 GeV²
- Some authors claim to have a work around for J=1/2
 - Evaluate light-front matrix elements of other components of the EM current, take linear combinations to eliminate matrix elements which must be zero
 - But there is no free lunch for higher J!
 - If use other components of I, don't have minimal set of matrix elements which transform into each other under boosts

Conclusions/Outlook

- Calculation of EM transition form factors for low J using light-front dynamics is reliable
 - We have made a simple fit to nucleon form factors extracted from polarization data
 - Results for nucleon similar to those of Miller
 - We have looked at nucleon, Δ (1232)P₃₃, N(1440)P₁₁, N(1535)S₁₁
 - (see also Rome group)
 - Effects of configuration mixing (one-gluon exchange, confining potential) are substantial
 - Relativistic effects can be large, e.g. Roper
 - Model can be applied to any state
 - Can estimate uncertainties at higher Q² from lack of rotational covariance
- Working on transitions to N* with higher J